Forecast Combination Based on Multiple Encompassing Tests in a Macroeconomic DSGE System
Abstract: We use data generated by a macroeconomic DSGE model to study the relative benefits of forecast combinations based on forecast-encompassing tests relative to simple uniformly weighted forecast averages across rival models. Assumed rival models are four linear autoregressive specifications,...Link(s) zu Dokument(en): | IHS Publikation |
---|---|
Hauptverfasser: | , , |
Format: | IHS Series NonPeerReviewed |
Sprache: | Englisch |
Veröffentlicht: |
Institut für Höhere Studien
2010
|
Zusammenfassung: | Abstract: We use data generated by a macroeconomic DSGE model to study the relative benefits of forecast combinations based on forecast-encompassing tests relative to simple uniformly weighted forecast averages across rival models. Assumed rival models are four linear autoregressive specifications, one of them a more sophisticated factor-augmented vector autoregression (FAVAR). The forecaster is assumed not to know the true data-generating DSGE model. The results critically depend on the prediction horizon. While one-step prediction hardly supports test-based combinations, the test-based procedure attains a clear lead at prediction horizons greater than two.; |
---|