Panel VAR Models with Spatial Dependence
Abstract: I consider a panel vector-autoregressive model with cross-sectional dependence of the disturbances characterized by a spatial autoregressive process. I propose a three-step estimation procedure. Its first step is an instrumental variable estimation that ignores the spatial correlation. In...Link(s) zu Dokument(en): | IHS Publikation |
---|---|
1. Verfasser: | |
Format: | IHS Series NonPeerReviewed |
Sprache: | Englisch |
Veröffentlicht: |
Institut für Höhere Studien
2009
|
Zusammenfassung: | Abstract: I consider a panel vector-autoregressive model with cross-sectional dependence of the disturbances characterized by a spatial autoregressive process. I propose a three-step estimation procedure. Its first step is an instrumental variable estimation that ignores the spatial correlation. In the second step, the estimated disturbances are used in a multivariate spatial generalized moments estimation to infer the degree of spatial correlation. The final step of the procedure uses transformed data and applies standard techniques for estimation of panel vector-autoregressive models. I compare the small-sample performance of various estimation strategies in a Monte Carlo study.; |
---|