Panel VAR Models with Spatial Dependence

Abstract: I consider a panel vector-autoregressive model with cross-sectional dependence of the disturbances characterized by a spatial autoregressive process. I propose a three-step estimation procedure. Its first step is an instrumental variable estimation that ignores the spatial correlation. In...

Ausführliche Beschreibung

Bibliographische Detailangaben
Link(s) zu Dokument(en):IHS Publikation
1. Verfasser: Mutl, Jan
Format: IHS Series NonPeerReviewed
Sprache:Englisch
Veröffentlicht: Institut für Höhere Studien 2009
Beschreibung
Zusammenfassung:Abstract: I consider a panel vector-autoregressive model with cross-sectional dependence of the disturbances characterized by a spatial autoregressive process. I propose a three-step estimation procedure. Its first step is an instrumental variable estimation that ignores the spatial correlation. In the second step, the estimated disturbances are used in a multivariate spatial generalized moments estimation to infer the degree of spatial correlation. The final step of the procedure uses transformed data and applies standard techniques for estimation of panel vector-autoregressive models. I compare the small-sample performance of various estimation strategies in a Monte Carlo study.;