The Extended Hodrick-Prescott (HP) Filter for Spatial Regression Smoothing

Abstract: The extended Hodrick-Prescott (HP) method was developed by Polasek (2011) for a class of data smoother based on second order smoothness. This paper develops a new extended HP smoothing model that can be applied for spatial smoothing problems. In Bayesian smoothing we need a linear regressi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Link(s) zu Dokument(en):IHS Publikation
1. Verfasser: Polasek, Wolfgang
Format: IHS Series NonPeerReviewed
Sprache:Englisch
Veröffentlicht: Institut für Höhere Studien 2011
Beschreibung
Zusammenfassung:Abstract: The extended Hodrick-Prescott (HP) method was developed by Polasek (2011) for a class of data smoother based on second order smoothness. This paper develops a new extended HP smoothing model that can be applied for spatial smoothing problems. In Bayesian smoothing we need a linear regression model with a strong prior based on differencing matrices for the smoothness parameter and a weak prior for the regression part. We define a Bayesian spatial smoothing model with neighbors for eachobservation and we define a smoothness prior similar to the HP filter in time series. This opens a new approach to modelbased smoothers for time series and spatial models based on MCMC. We apply it to the NUTS-2 regions of the European Union for regional GDP and GDP per capita, where the fixed effects are removed by an extended HP smoothing model.;