The Extended Hodrick-Prescott (HP) Filter for Spatial Regression Smoothing
Abstract: The extended Hodrick-Prescott (HP) method was developed by Polasek (2011) for a class of data smoother based on second order smoothness. This paper develops a new extended HP smoothing model that can be applied for spatial smoothing problems. In Bayesian smoothing we need a linear regressi...Link(s) zu Dokument(en): | IHS Publikation |
---|---|
1. Verfasser: | |
Format: | IHS Series NonPeerReviewed |
Sprache: | Englisch |
Veröffentlicht: |
Institut für Höhere Studien
2011
|
Zusammenfassung: | Abstract: The extended Hodrick-Prescott (HP) method was developed by Polasek (2011) for a class of data smoother based on second order smoothness. This paper develops a new extended HP smoothing model that can be applied for spatial smoothing problems. In Bayesian smoothing we need a linear regression model with a strong prior based on differencing matrices for the smoothness parameter and a weak prior for the regression part. We define a Bayesian spatial smoothing model with neighbors for eachobservation and we define a smoothness prior similar to the HP filter in time series. This opens a new approach to modelbased smoothers for time series and spatial models based on MCMC. We apply it to the NUTS-2 regions of the European Union for regional GDP and GDP per capita, where the fixed effects are removed by an extended HP smoothing model.; |
---|